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Abstract: The main environmental problems comprise two main directions: air and water. Water 

treatment plant is a critical infrastructure, especially in large cities. The activated sludge process is a 

typical example of highly nonlinear system. The associated models found in literature are mainly 

analytical and complex. In this paper there are proposed data-driven models obtained from plant 

operation data. A factor reduction procedure, namely principal component analysis is used to find 

meaningful correlations between process measurements. The selected correlations are obtained via 

simple and multiple regression algorithm. The resulted models are specific to the studied plant, 

simpler than the analytical ones, and with sufficient accuracy if used in plant monitoring and 

operation. The proposed procedure of using data-driven models for inferential measuring decreases 

the analysis costs (even eliminating the necessity of measuring equipment). If the experience in 

operating the plant is used to predict parameter trends this procedure can provide a useful tool for 

developing a decision support system for the plant operator. A real time prediction module associated 

with a warning system can be applied for every active sludge process, having as condition the 

availability of plant operating data. 
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1. Introduction  
The activated sludge process takes part from the water treatment plant. Wastewater treatment plant 

(WWTP) is one of the most important part of the solution for environmental problems associated to 

important cities. Even the media recently emphasized the problems within the Romanian water 

management system.  

Since Henze et al. provided the first general model for single sludge wastewater systems [1], the 

researchers tried to improve or supplement this research direction. The first model, denoted ASM1, 

captures the high nonlinear feature of the process and it was first improved by Henze and his team. 

Consequently, ASM2 and ASM3 models were developed [2-4]. Other researchers focused on the 

performance analysis of the proposed models [5, 6]. The models were studied for particular cases of 

activated sludge process such as in [7] (membrane bioreactors for wastewater treatment). Other 

researchers tried to improve the models including the influence of hydrodynamic parameters [8].  

The main control system associated with activated sludge process is dissolved oxygen control. The 

dissolved oxygen control system was implemented in real time, and a model predictive control based 

on ASM models was developed [9]. A thorough review of practical applications of the activated sludge 

model and their development, applied to plant optimization, the extension, upgrading, retrofitting and 

troubleshooting of wastewater treatment plants is presented in [10] and [11]. The technology used to 

develop the support for the membranes implicated in the activated sludge process is also very 

important for the process efficiency (e.g. ultrafiltration polysulfone membranes with ZnO/TiO2 

nanohybrid blending [12], biological filters [13], ultrafiltration pilot with polymeric membrane [14]). 

The characteristics of the aerobic sludge granules also influence the WWTP performance [15, 16].   

 
 
*email: sfrancu@upg-ploiesti.ro 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev
https://orcid.org/0000-0002-8738-5091
https://orcid.org/0000-0001-8587-7204


 Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev. Chim.1949 

 

Rev. Chim., 71 (5), 2020, 75-85                                                                76                                    https://doi.org/10.37358/RC.20.5.8115                                                            

    

 

While the above models were analytical, the models proposed in the paper are extracted from 

operating data (data driven models). The paper aims to identify the representative parameters for the 

activated sludge treatment process using principal components analysis (PCA) technique. The next 

step is to use the found correlations to determine a number of models using simple and multiple 

regression. Selected models can be further used to predict process parameters that are very important 

in the operation of activated sludge process. The paper is structured as follows. The second part briefly 

presents the studied activated sludge process from a Romanian wastewater treatment plant. The third 

part provides an experimental data analysis with the discussion of the results while the last part 

presents the concluding remarks.    

 

2. Materials and methods 
The activated sludge process from an industrial wastewater treatment plant  

The studied wastewater treatment has three parts: mechanical, chemical and biological part. The 

biological part takes place in a cuboid (aprox. 4400 m3) filled of wastewater divided in two equal 

cuboid reservoirs, namely aerotank and secondary decanter (Figure 1). The biological treatment is 

done using the activated sludge process. The aerotank reservoir is the place where using the Messner 

panels the activated sludge is aerated. The panels have a special construction that improves the 

efficiency of oxygen mass transfer and reduces the energy consumption. The dissolved oxygen control 

is made with a group of three blowers (main energy consumption in WWTP). An air layer is formed 

under each Messner panel membrane which opens the membrane orifices as the blowers increase their 

speed. Dispersed fine air bubbles rise to the aerotank surface and determine the activated sludge to 

separate by gravity and maturity. The 148 Messner panels are evenly distributed at the bottom of the 

two reservoirs.  

 

 
Figure 1. Two cuboid reservoirs and an oxymeter from the studied plant 

 

The eight vertical wood panels from aerotank are used to coordinate the wastewater flow and to 

add or diminish the time of treatment. (ca. 1 to 3 hrs. with a maximum speed of 1m/s depending of the 

wastewater volume). For the studied plant, an increased water purification degree is obtained with a 

constant value of the activated sludge volume (300-400 L). 

The artificial biotope conditions must be fulfilled. Besides oxygen, the nutrients for activated 

sludge bacteria must have a proper dosage. The main nutrients, nitrogen N and phosphorus P have a 

recommended ratio of 5:1. The minimum value for the P element is of 0.6mg/L.  
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Another biotope parameter is temperature. Mesophilic microorganisms form the biocenosis. 

Temperature modifies the microorganisms’ metabolism, the oxygen demand and even the length of 

their living. The recommended temperature for their development is 28-29 ºC [17]. From 35 ºC the 

oxygen demand increases, but the microorganisms die. At low temperature microorganism’s 

metabolism is slowing down.  

The third important biotope parameter is wastewater pH. Usually pH is established at the chemical 

part and it is around 7 (±1.5). Otherwise, the microorganisms do not survive.   

Inhibitors (e.g. detergents, pesticides and phenols) that can intoxicate the activated sludge, 

preventing microorganisms’ development, represent the fourth biotope parameter (that must be 

limited).  

If all the biotope conditions are fulfilled, the microorganisms grow and their excess must be 

removed with special pumps. The wastewater flux and a good part of the activated sludge goes from 

aerotank to the secondary decanter that works as gravity separator. The separated activated sludge is 

recycled then to the aerotank (Figure 2). The main analysis points are denoted from A1 to A4. 

 

    

AEROTANK
SECONDARY 
DECANTER

Fresh waste water Parshall output

Recycling flux

Intermediary flux

A1 A2 A3

A4

 
Figure 2. The biological step of wastewater treatment plant and its monitoring points 

 

If the measuring points are many and dispersed throughout the plant, there is a single control loop 

for dissolved oxygen control. The measuring point uses an oxymeter transducer (Figure 1) and the 

manipulated point comprises three blowers (one of them having variable speed). The data driven 

models are correlations and not necessarily express causality. The aim is to provide a full analysis 

panel for the studied plant, even when some transducers or offline analyzers are not available. 

The next section presents the main results obtained using PCA, a factorial method applied to the 

available operating data, data taken from the plant centralized records of the wastewater samples (at 

the biological step output) analysis. The PCA is a data reduction method, used to reduce a large 

number of variables that needs to be analyzed into a smaller set of data (called principal components or 

factors) containing all the information from the initial analyzed variables [18, 19]. Also, PCA is a 

technique used to highlight the correlations between the analyzed variables. This technique also 

reduces the dimensionality of variables’ space by representing it through a number of factors that 

capture most of initial data variance, behavior [20]. PCA was implemented using IBM SPSS Statistics 

software (on a 2.13 GHz CPU with 4 GB RAM), that offers to the user, among many others facilities, 

advanced statistical analysis tools, machine learning algorithms and more important the integration of 

big data [21, 22]. 

 

3. Results and discussions  
Experimental data analysis 

The purpose of applying PCA was to identify the parameters from the activated sludge treatment 

process that have the greatest influence on the plant operation from a studied industrial wastewater 
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treatment plant (WWTP). The PCA method described in [18, 19, 20, 23, 24, 25] was applied to the 

input and output data corresponding to the aerotank and to the secondary decanter levels.  

As it was mentioned, the IBM SPSS Statistics software [21, 22] was used in order to analyze the 

available operating data (from January to December, year 2019) supplied by the centralized records of 

the wastewater samples (at the biological step output) analysis [26]. As the biological process takes 

place in a cuboid composed of an aerotank and a secondary decanter, the centralizing tables presents 

the measurement of the monitored parameters for each of the two components. So, according to the 

records [26], the parameters monitored at aerotank level, are: pH, extractable, detergents, chemical 

oxygen demand (COD-Cr), total suspended solids (TSS), sludge pH, and sludge volume. The 

parameters monitored according to the same records for the secondary decanter are: sludge pH, sludge 

volume, pH, extractable, detergents, TSS, total residue, ammonium (N), phosphorus (P), CODCr, 

phenols, biological oxygen demand (BOD5).Using the mentioned available data at the aerotank level 

was developed the data_aerotanc.sav database, and for the available data at secondary decanter level 

was developed data_decantor.sav (Figure 3) database, both being subject to factorial analysis, 

respectively to PCA method. The analysis of these parameters is essential, due to the fact the output of 

the biological step, respectively the plant effluent (that needs to comply the normative-NTPA001 and 

002/2005 [27, 28]), is transmitted into the plant emissary, respectively the Dâmbu stream, affecting its 

quality.    

 

 
Figure 3. Date_decantor.sav database (selection) 

 

Applying PCA, through the Analyze-Dimension-Reduction procedure on the aerotank and 

secondary decanter parameters, a set of statistical results was obtained, such as: 

1. The correlation matrix for the data from date_aerotanc.sav database, presented in Table 1; 

2. The correlation matrix for the data from date_decantor_sec.sav database, presented in Table 2; 

 

Table 1. The Correlation matrix for date_aerotank.sav database (SELECTION). 
Parameters Extractable Detergents COD-Cr TSS KMO 

index 

pH .262 .175 .153 .466  

 

0.604 
Extract. 1.000 .628 .429 .828 

Deterg. .628 1.000 .480 .621 

COD-Cr .429 .480 1.000 .606 

TSS .828 .621 .606 1.000 

Sludge Vol. -.092 -.209 .145 -.130 

Sludge pH -.247 -.155 -.146 -.214 
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As it can be observed from Table 1, there are significant correlations between the following 

parameters: 

1. Extractable with Detergents (0.628); 

2. Extractable with TSS (0.828); 

3. Detergents with TSS (0.621); 

4. COD-Cr with TSS (0.606). 

 

Table 2. The Correlation matrix for date_decantor_sec.sav database (SELECTION). 
Parameters Extract. TSS N P COD-Cr Phenols KMO 

INDEX 

Sludge Vol. -.427 -.263 -.151 .212 -.105 -.108  

 

 

 

 

0.600 

Sludge pH -.190 -.103 -.091 .042 -.199 -.150 

pH .165 .109 .345 -.012 .408 .282 

Extract. 1.000 .690 .280 .057 .281 .294 

Deterg. .591 .410 .168 -.101 .468 .226 

TSS .690 1.000 .507 .253 .533 .633 

Residue .098 .035 -.072 .316 .366 .256 

N .280 .507 1.000 .230 .610 .653 

P .057 .253 .230 1.000 .382 .624 

CODCr .281 .533 .610 .382 1.000 .831 

Phenols .294 .633 .653 .624 .831 1.000 

BOD5 -.198 .039 -.131 -.139 -.151 -.233 

 

From Table 2, one can extract the following significant correlation between parameters: 

1. Extractable and TSS (0.690); 

2. TSS with Extractable (0.690) and Phenols (0.633); 

3. Ammonium and COD-Cr (0.610) and Phenols (0.653); 

4. Phosphorous and Phenols (0.624); 

5. COD-Cr and Ammonium (0.610) and Phenols (0.831); 

6. Phenols and TSS (0.633), Ammonium (0.653), Phosphorous (0.624) and COD-Cr (0.831).  

 

The value of the KMO index shown in Table 1 and Table 2 indicates the existence of one or more 

common factors (principal components) in both the aerotank and secondary decanter parameters, which 

justifies the application of a factor reduction procedure, namely PCA.  

As it was mentioned, PCA is used to reduce the number of analyzed variables (keeping as much as 

possible from the variance trend of initial data) with the goal of determine those factors (named 

principal components) that describes the behavior and variance of analyzed variables. According to 

[23], from the number of obtained factors are selected only that ones that fulfill the selection criteria 

(eigenvalue>=1), factors that supplies the most useful information about the initial analyzed variables. 

So, each eigenvalue is the part of variance explained, respectively captured by each factor (principal 

component). The PCA method usage supplies, the initial and the final factor solution, respectively the 

solution before and after rotation procedure, in this case the Varimax rotation method [23, 24, 25].   

The initial factor solution (before rotation procedure) obtained by applying PCA for aerotank and 

secondary decanter supplied the following results:  

1. For aerotank data were supplied a number of seven factors of which only the first two meet the 

selection criteria (Eigenvalue>=1) (Figure 4a.); 

2. For secondary decanter data were supplied a number of twelve factors of which only the first 

five meet the selection criteria (Eigenvalue>=1) (Figure 4b.). 
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a.                                    b. 

Figure 4. Scree Plot- a. aerotank data, b. secondary decanter 

 

The values charts, respectively the scree plots presented in Figure 4a. and Figure 4b., are very useful 

in establishing the number of principal components (factors). So, for the analyzed data at aerotank level, 

only the first two factors provide the most relevant information about the behavior and variance of the 

initial analyzed parameters, respectively only these two capture the most of the initial data variance. At 

the secondary decanter level, only the first five factors are the most relevant ones. A better 

interpretation of the obtained components, is observed after the rotation of the factors, which offers a 

better image of them. So, in Table 3 are presented the main components (factors obtained after rotation 

procedure) obtained through PCA, respectively the factorial structure of the analyzed variables at the 

aerotank and secondary decanter level. 

 

Table 3. The factorial structure of the analyzed variables. 
Param. Aerotank Param. Secondary decanter 

Factor 

no.1 

Factor 

no.2 

Factor 

no.1 

Factor 

no.2 

Factor 

no.3 

Factor 

no.4 

Factor 

no.5 

 

pH .455 -.043 
Sludge 

Vol. 
.176 -.669 -.277 .009 .441 

Extract. .841 -.200 
Sludge 

pH 
-.123 -.057 -.409 .078 -.741 

Deterg. .752 -.238 pH .160 .072 .857 .152 .019 

COD-Cr .758 .203 Extract. .190 .884 .026 .047 .055 

TSS .926 -.153 Deterg. .076 .601 .408 .431 .397 

Sludge 

Vol. 
.034 .867 TSS .575 .720 -.115 -.093 .138 

Sludge 

pH. 
-.183 .648 Residue .155 .056 .146 .935 -.074 

   N .692 .213 .362 -.355 -.114 

   P .752 -.175 -.305 .324 -.069 

   COD-Cr .768 .212 .373 .210 .027 

   Phenols .921 .187 .152 .085 -.079 

   COD5 -.215 .001 -.148 -.001 .560 

 

According Table 3, the proper operating of the active sludge treatment process at aerotank and 

secondary decanter level is influenced by the following factors: 

1.At aerotank level: 

• Factor 1 is given by: Extractable (0.841), Detergents  (0.752), COD-Cr (0.758) and TSS (0.926); 

• Factor 2 is given by: Sludge volume (0.867) and sludge pH (0.648). 
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2.At secondary decanter level: 

• Factor 1 is given by: ammonium (0.692), phosphorus (0.752), COD-Cr (0.768) and phenols (0.921); 

•Factor 2 is given by: extractable (0.884), detergents (0.601) and TSS (0.720); 

•Factor 3 is given by: pH (0.857); 

•Factor 4 is given by: total residue (0.935); 

• Factor 5 is given by: COD5 (0.560). 

 

Next, using simple and multiple linear regression [29, 30], numerical prediction models were 

determined at aerotank and secondary decanter level.  

Table 4 shows the coefficients R (coefficient of regression), R2 (coefficient of determination of R) 

and the standard error of the Estimate, obtained by applying the SPSS Analyze-Regression-Linear 

procedure to the aerotank parameters (variables). 

 

Table 4. R2, R, std. Error of the estimate-aerotank level. 
No. regression Dependent 

variable 

Independent 

variables 

R2 R Std. Error of 

the Estimate 

1 Extract. Deterg., TSS 0.706 0.841 0.841 

2 Deterg. TSS 0.386 0.621 0.605 

3 COD-Cr TSS 0.368 0.606 8.623 

 

As it can be observed from Table 4, there is just one viable model that can be extracted, respectively 

regression no. 1, where 70.6% of the dependent variable (extractable) variance is explained by the 

variation of the independent variables (TSS, Deterg.) respectively by the regression equation (Model 

no.1).  

                              Extractable = 1.739 + 1.111 * Detergents + 0.721 * TSS               (1) 

 

The obtained model can be used to predict the extractable evolution knowing Detergents and TSS 

parameters. Figure 5 represents the graphic between the dependent variable (extractable) and the 

regression-derived variables such as the predicted standardized values. 

 

 
Figure 5. Scatterplot Dependent Variable: Extractable 

 

Table 5 shows the coefficients R (coefficient of regression), R2 (coefficient of determination of R) 

and standard error of the estimate, obtained by applying the SPSS Analyze-Regression-Linear 

procedure to the secondary decanter parameters (variables). 
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Table 5. R2, R, std. error of the estimate-secondary decanter. 
No. regression Dependent 

variable 

Independent 

variables 

R2 R Std. Error of 

the Estimate 

1 TSS Extract., phenols 0.679 0.824 1.735 

2 N COD-Cr, phenols 0.441 0.664 0.09663 

3 Phenols TSS, N, P, COD-

Cr 

0.861 0.928 0.01951 

4 COD-Cr N, phenols 0.699 0.836 4.56158 

 

As it can be observed in Table 5, there are three viable models that can be extracted, respectively 

regression no. 1, no. 3 and 4, models presented next. 

Regression no.1 - 67.9% of the dependent variable (TSS) variation is explained by the variation of 

the independent variables (Extract, phenols) respectively by the regression (model) equation (2);  

 

TSS=17.872+1.009*Extractable+28.640*Phenols    (2) 

 

The model (2) can be used to predict the TSS evolution knowing Extractable and Phenols. Figure 6 

represents the graphic between the dependent variable (TSS) and the regression-derived variables such 

as the predicted standardized values. 

 
Figure 6. Scatterplot Dependent Variable: TSS 

 

Regression no.2 - 86.1% of the dependent variable (Phenols) variation is explained by the variation 

of the independent variables (TSS, Ammonium, Phosphorus) respectively by the regression (model) 

equation (3);  

 

Phenols = -0.141+0.003*TSS+0.069*Ammonium +0.209* Phosphorus+0.003*COD-Cr          (3) 

 

The model (3) can be used to predict or compute the Phenols evolution knowing TSS, Ammonium, 

Phosphorus and Chemical oxygen demand. Figure 7 represents the graphic between the dependent 

variable (Phenols) and the regression-derived variables such as the predicted standardized values. 
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Figure 7. Scatterplot Dependent Variable: Phenols 

 

Regression no.3 - 69.9% of the dependent variable (COD-Cr) variation is explained by the variation 

of the independent variables (Ammonium, Phenols) respectively by the regression (model) equation (4);  

COD-Cr=28.880+7.487*Ammonium+124.676*Phenols                         (4) 

The model (4) can be used to predict the COD-Cr evolution knowing Ammonium and Phenols. 

Figure 8 represents the graphic between the dependent variable (COD-Cr) and the regression-derived 

variables such as the predicted standardized values.  

 

 
Figure 8. Scatterplot Dependent Variable: COD-Cr 

 

It should be mentioned that the developed models are not general ones, they being developed using 

the available operating data from a studied Romanian industrial plant. The number of models extracted 

from data is far bigger than the ones presented. Only the best models in terms of statistical indicators 

were presented in this paper. The results obtained and presented above are useful to identify those 

parameters that have the greatest influence on the processes from the plant biological part (respectively 

on the activated sludge treatment process), as well as the correlations (models - used to predict the 

analyzed parameter trends) between them.  
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4. Conclusions  
The proposed models can reduce the number of analyzers or transducers used to monitor the 

studied plant. At aerotank level the PCA method combined with regression generates a model that can 

make an inferential measuring or a prediction for Total suspended solids based on Extractable and 

Phenols with a coefficient of regression R=0.841.  

At decanter level three viable models are found. The first model can be used to predict the Total 

suspended solids evolution knowing Extractable and Phenols with a coefficient of regression R of 

0.824. The second model is useful to predict or compute the Phenols trends knowing Total suspended 

solids, Ammonium, Phosphorus and Chemical oxygen demand with the best coefficient of regression 

R=0.928. The third model can be used to predict the Chemical oxygen demand trend knowing 

Ammonium and Phenols with a coefficient of regression R of 0.836. 

The resulted models are specific to the studied plant. They are simpler than the analytical ones and 

the resulted values of R suggest sufficient accuracy if used in plant monitoring and operation. These 

proposed data-driven models for inferential measuring decreases the analysis costs (even eliminating 

the necessity of measuring equipment). But the proposed procedure is general and previous experience 

in operating the plant can be used to predict parameter trends. This is an important tool for developing 

a decision support system for the plant operator. A real time prediction module associated with a 

warning system can be applied for every active sludge process, having as condition the availability of 

previous plant operating data. 
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